Alternative solutions for supplemental energy dissipation in bridges

A key aspect of the seismic performance of bridges is the energy dissipation mechanism. The most usual mechanisms are the formation of plastic hinges in the piers, seismic isolation, and the addition of supplemental damping devices (such as hydraulic or hysteretic dampers). The present study assesse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of earthquake engineering 2020, Vol.18 (1), p.399-422
Hauptverfasser: Salonikios, T. N., Kolotsios, G., Kappos, A. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A key aspect of the seismic performance of bridges is the energy dissipation mechanism. The most usual mechanisms are the formation of plastic hinges in the piers, seismic isolation, and the addition of supplemental damping devices (such as hydraulic or hysteretic dampers). The present study assesses the feasibility of an energy dissipation device that has not been used in bridges before, consisting of special steel links installed at the abutments. First, the behaviour of these devices is evaluated, and an analytical (finite element) model is developed, informed by test results. Then the response of an actual railway bridge to a number of input motions is studied; in one case the bridge is equipped with hydraulic dampers and in the second with the proposed steel links. It is found that the energy dissipation and the performance of the bridge are similar in both cases, which is a first indication that the proposed system, which has a lower cost than hydraulic dampers, is worth exploring further as an alternative option for providing supplemental energy dissipation in bridges.
ISSN:1570-761X
1573-1456
DOI:10.1007/s10518-019-00733-x