On the torsion of rational elliptic curves over sextic fields

Given an elliptic curve E/\mathbb{Q} with torsion subgroup G = E(\mathbb{Q})_{\rm {tors}} we study what groups (up to isomorphism) can occur as the torsion subgroup of E base-extended to K, a degree 6 extension of \mathbb{Q}. We also determine which groups H = E(K)_{\rm {tors}} can occur infinitely...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2020-01, Vol.89 (321), p.411-435
Hauptverfasser: Daniels, Harris B., González-Jiménez, Enrique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given an elliptic curve E/\mathbb{Q} with torsion subgroup G = E(\mathbb{Q})_{\rm {tors}} we study what groups (up to isomorphism) can occur as the torsion subgroup of E base-extended to K, a degree 6 extension of \mathbb{Q}. We also determine which groups H = E(K)_{\rm {tors}} can occur infinitely often and which ones occur for only finitely many curves. This article is a first step towards a complete classification of torsion growth over sextic fields.
ISSN:0025-5718
1088-6842
DOI:10.1090/mcom/3440