MAC Layer Resource Allocation for Wireless Body Area Networks

Wireless body area networks (WBANs) can provide low-cost, timely healthcare services and are expected to be widely used for e-healthcare in hospitals. In a hospital, space is often limited and multiple WBANs have to coexist in an area and share the same channel in order to provide healthcare service...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:中兴通讯技术(英文版) 2014 (3), p.13-21
Hauptverfasser: Qinghua Shen, Xuemin Sherman Shen, Tom HLuan, Jing Liu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wireless body area networks (WBANs) can provide low-cost, timely healthcare services and are expected to be widely used for e-healthcare in hospitals. In a hospital, space is often limited and multiple WBANs have to coexist in an area and share the same channel in order to provide healthcare services to different patients. This causes severe interference between WBANs that could significantly reduce the network throughput and increase the amount of power consumed by sensors placed on the body. There-fore, an efficient channel-resource allocation scheme in the medium access control (MAC) layer is crucial. In this paper, we devel-op a centralized MAC layer resource allocation scheme for a WBAN. We focus on mitigating the interference between WBANs and reducing the power consumed by sensors. Channel and buffer state are reported by smartphones deployed in each WBAN, and channel access allocation is performed by a central controller to maximize network throughput. Sensors have strict limitations in terms of energy consumption and computing capability and cannot provide all the necessary information for channel allocation in a timely manner. This deteriorates network performance. We exploit the temporal correlation of the body area channel in order to minimize the number of channel state reports necessary. We view the network design as a partly observable optimization prob-lem and develop a myopic policy, which we then simulate in Matlab.
ISSN:1673-5188
DOI:10.3969/j.issn.1673-5188.2014.03.002