与椭圆的“类准线”有关的三个最值问题
准线是圆锥曲线的一条重要的特征线.对于椭圆x^2/a^2+y^2/b^2=1(a〉b〉0),x=a^2/c就是其一条准线,文[1]探讨了椭圆的另一条直线x=a^2/m(m〉0)的性质,得到了一些有意义的结论,该直线称为椭圆的“类准线”(当m—c时直线即为准线).经过研究,我们发现了与椭圆“类准线”有关的三个最值问题,现用定理形式叙述如下....
Gespeichert in:
Veröffentlicht in: | 中学数学教学 2008 (1), p.15-16 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 准线是圆锥曲线的一条重要的特征线.对于椭圆x^2/a^2+y^2/b^2=1(a〉b〉0),x=a^2/c就是其一条准线,文[1]探讨了椭圆的另一条直线x=a^2/m(m〉0)的性质,得到了一些有意义的结论,该直线称为椭圆的“类准线”(当m—c时直线即为准线).经过研究,我们发现了与椭圆“类准线”有关的三个最值问题,现用定理形式叙述如下. |
---|---|
ISSN: | 1002-4123 |
DOI: | 10.3969/j.issn.1002-4123.2008.01.009 |