不动点定理及其应用

1912年,荷兰数学家布劳维证明,任意一个把维球体映入自己的连续映象(即拓扑变换)至少有一个不动点.这就是著名的拓扑不动点定理.我们知道,直线是一维空间,平面是二维空间,普通空间是三维空间,四维、五维及以上的空间就很抽象了,下面对一维球体做出一个有趣的例子....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:中学教学参考 2012 (2), p.38-38
1. Verfasser: 蒋亚军
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:1912年,荷兰数学家布劳维证明,任意一个把维球体映入自己的连续映象(即拓扑变换)至少有一个不动点.这就是著名的拓扑不动点定理.我们知道,直线是一维空间,平面是二维空间,普通空间是三维空间,四维、五维及以上的空间就很抽象了,下面对一维球体做出一个有趣的例子.
ISSN:1674-6058