Multigene editing via CRISPR/Cas9 guided by a single‐sgRNA seed in Arabidopsis
Summary We report that a solo single‐guide RNA (sgRNA) seed is capable of guiding Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR −associated 9 (CRISRP/Cas9) to simultaneously edit multiple genes AtRPL10A, AtRPL10B and AtRPL10C in Arabidopsis. Our results also demonstrate t...
Gespeichert in:
Veröffentlicht in: | Journal of integrative plant biology 2018-05, Vol.60 (5), p.376-381 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Summary
We report that a solo single‐guide RNA (sgRNA) seed is capable of guiding Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR −associated 9 (CRISRP/Cas9) to simultaneously edit multiple genes AtRPL10A, AtRPL10B and AtRPL10C in Arabidopsis. Our results also demonstrate that it is possible to use CRISPR/Cas9 technology to create AtRPL10 triple mutants which otherwise cannot be generated by conventional genetic crossing. Compared to other conventional multiplex CRISPR/Cas systems, a single sgRNA seed has the advantage of reducing off‐target gene‐editing. Such a gene editing system might be also applicable to modify other homologous genes, or even less‐homologous sequences for multiple gene‐editing in plants and other organisms.
A single‐sgRNA seed is capable of guiding CRISPR/Cas9 to simultaneously edit multiple genes AtRPL10A, AtRPL10B and AtRPL10C in Arabidopsis. Our results imply that such a multi‐gene editing system might be also applicable to modifying other homologous genes or even less‐homologous sequences in plants and other organisms. |
---|---|
ISSN: | 1672-9072 1744-7909 |
DOI: | 10.1111/jipb.12622 |