Use of genotype-environment interactions to elucidate the pattern of maize root plasticity to nitrogen deficiency
Maize(Zea mays L.) root morphology exhibits a high degree of phenotypic plasticity to nitrogen(N) de ficiency,but the underlying genetic architecture remains to be investigated Using an advanced BC_4F_3 population,we investigated the root growth plasticity under two contrasted N levels and identi fi...
Gespeichert in:
Veröffentlicht in: | Journal of integrative plant biology 2016-03, Vol.58 (3), p.242-253 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Maize(Zea mays L.) root morphology exhibits a high degree of phenotypic plasticity to nitrogen(N) de ficiency,but the underlying genetic architecture remains to be investigated Using an advanced BC_4F_3 population,we investigated the root growth plasticity under two contrasted N levels and identi fied the quantitative trait loci(QTLs) with QTL-environment(Q×E)interaction effects. Principal components analysis(PCA) on changes of root traits to N de ficiency(D LN-HN) showed that root length and biomass contributed for 45.8% in the same magnitude and direction on the first PC,while root traits scattered highly on PC_2 and PC_3. Hierarchical cluster analysis on traits for D LN-HN further assigned the BC_4F_3 lines into six groups,in which the special phenotypic responses to N de ficiency was presented These results revealed the complicated root plasticity of maize in response to N de ficiency that can be caused by genotype environment(G×E) interactions. Furthermore,QTL mapping using a multi-environment analysis identi fied 35 QTLs for root traits. Nine of these QTLs exhibited signi ficant Q×E interaction effects. Taken together,our findings contribute to understanding the phenotypic and genotypic pattern of root plasticity to N de ficiency,which will be useful for developing maize tolerance cultivars to N de ficiency. |
---|---|
ISSN: | 1672-9072 1744-7909 |
DOI: | 10.1111/jipb.12384 |