Role of rice cytosolic hexokinase OsHXK7 in sugar signaling and metabolism

We characterized the function of the rice cytosolic hexokinase OsHXK7 (Qryza sativa HexokindseZ), which is highly upregulated when seeds germinate under O2- deficient conditions. According to transient expression assays that used the promoter:luciferase fusion construct, OsHXK7 enhanced the glucose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of integrative plant biology 2016-02, Vol.58 (2), p.127-135
Hauptverfasser: Kim, Hyun‐Bi, Cho, Jung‐Il, Ryoo, Nayeon, Shin, Dong‐Ho, Park, Youn‐Il, Hwang, Yong‐Sic, Lee, Sang‐Kyu, An, Gynheung, Jeon, Jong‐Seong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We characterized the function of the rice cytosolic hexokinase OsHXK7 (Qryza sativa HexokindseZ), which is highly upregulated when seeds germinate under O2- deficient conditions. According to transient expression assays that used the promoter:luciferase fusion construct, OsHXK7 enhanced the glucose (Glc)-dependent repression of a rice n-amylase gene (RAmy3D) in the mesophyll protoplasts of maize, but its catalytically inactive mutant alleles did not. Consistently, the expression of OsHXK7, but not its catalytically inactive alleles, complemented the Arabidopsis glucose insensitive2-1 (gin2-1) mutant, thereby resulting in the wild type characteristics of Glc-dependent repression, seedling development, and plant growth. Interestingly, OsHXK7-mediated Glc-dependent repression was abolished in the O2-deficient mesophyll protoplasts of maize. This result provides compelling evidence that OsHXK7 functions in sugar signaling via a glycolysis-dependent manner under normal conditions, but its signaling role is suppressed when O2 is deficient. The germination of two null OsHXK7 mutants, oshxk7-1 and oshxk7-2, was affected by O2 deficiency, but overexpression enhanced germination in rice. This result suggests the distinct role that OsHXK7 plays in sugar metabolism and efficient germination by enforcing glycolysis-mediated fermentation in O2-deficient rice.
ISSN:1672-9072
1744-7909
DOI:10.1111/jipb.12366