Expression Analysis of Proline Metabolism-related Genes From Halophyte Arabis stelleri under Osmotic Stress Conditions
Arabis stelleri var. japonica evidenced stronger osmotic stress tolerance than Arabidopsis thaliana. Using an A. thaliana microarray chip, we determined changes in the expression of approximately 2 800 genes between A. stelleri plants treated with 0.2 M mannitol versus mock-treated plants. The most...
Gespeichert in:
Veröffentlicht in: | Journal of integrative plant biology 2010-10, Vol.52 (10), p.891-903 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Arabis stelleri var. japonica evidenced stronger osmotic stress tolerance than Arabidopsis thaliana. Using an A. thaliana microarray chip, we determined changes in the expression of approximately 2 800 genes between A. stelleri plants treated with 0.2 M mannitol versus mock-treated plants. The most significant changes in the gene expression patterns were in genes defining cellular components or in genes associated with the endomembrane system, stimulus response, stress response, chemical stimulus response, and defense response. The expression patterns of three de novo proline biosynthesis enzymes were evaluated in A. stelleri var. japonica seedlings treated with 0.2 M mannitol, 0.2 M sorbitol, and 0.2 M NaCI. The expression of At-pyrroline-5-carboxylate synthetase was not affected by NaCI stress but was similarly induced by mannitol and sorbitol. The proline dehydrogenase gene, which is known to be repressed by dehydration stress and induced by free L-proline, was induced at an early stage by mannitol treatment, but the level of proline dehydrogenase was increased later by treatment with both mannitol and NaCI. The level of free L-proline accumulation increased progressively in response to treatments with mannitol, sorbitol, and NaCI. Mannitol induced L-proline accumulation more rapidly than NaCI or sorbitol. These findings demonstrate that the osmotic tolerance of the novel halophyte, Arabis stelleri, is associated with the accumulation of L-proline. |
---|---|
ISSN: | 1672-9072 1744-7909 |
DOI: | 10.1111/j.1744-7909.2010.00990.x |