Molecular Characterization of a Dehydroascorbate Reductase from Pinus bungeana

Dehydroascorbate reductase (DHAR) plays a critical role in the ascorbate-glutathione recycling reaction for most higher plants. To date, studies on DHAR in higher plants have focused largely on Arabidopsis and agricultural plants, and there is virtually no information on the molecular characteristic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of integrative plant biology 2009-11, Vol.51 (11), p.993-1001
Hauptverfasser: Yang, Hai-Ling, Zhao, Ying-Ru, Wang, Cai-Ling, Yang, Zhi-Ling, Zeng, Qing-Yin, Lu, Hai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dehydroascorbate reductase (DHAR) plays a critical role in the ascorbate-glutathione recycling reaction for most higher plants. To date, studies on DHAR in higher plants have focused largely on Arabidopsis and agricultural plants, and there is virtually no information on the molecular characteristics of DHAR in gymnosperms. The present study reports the cloning and characteristics of a DHAR (PbDHAR) from a pine, Pinus bungeana Zucc. ex Endl. The PbDHAR gene encodes a protein of 215 amino acid residues with a calculated molecular mass of 24.26 kDa. The predicted 3-D structure of PbDHAR showed a typical glutathione S-transferase fold. Reverse transcripUon-polymerase chain reaction revealed that the PbDHAR was a constitutive expression gene in P. bungeana. The expression level of PbDHAR mRNA in P. bungeana seedlings did not show significant change under high temperature stress. The recombinant PbDHAR was overexpressed in Escherichia coil following purification with affinity chromatography. The recombinant PbDHAR exhibited enzymatic activity (19.84 i.mnol/min per mg) and high affinity (a Krn of 0.08 mM) towards the substrates dehydroascorbate (DHA). Moreover, the recombinant PbDHAR was a thermostable enzyme, and retained 77% of its initial activity at 55℃. The present study is the first to provide a detailed molecular characterization of the DHAR in P. bungeana.
ISSN:1672-9072
1744-7909
DOI:10.1111/j.1744-7909.2009.00848.x