An in vitro evaluation of novel NHA/zircon plasma coating on 316L stainless steel dental implant

The surface characteristics of an implant that influence the speed and strength of osseointegration include crystal structure and bioactivity. The aim of this study was to evaluate the bioactivity of a novel natural hydroxyapatite/zircon(NHA/zircon) nanobiocomposite coating on 316L stainless steel(S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in natural science 2014-04, Vol.24 (2), p.150-156
Hauptverfasser: Karamian, Ebrahim, Kalantar Motamedi, Mahmood Reza, Khandan, Amirsalar, Soltani, Parisa, Maghsoudi, Sahel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The surface characteristics of an implant that influence the speed and strength of osseointegration include crystal structure and bioactivity. The aim of this study was to evaluate the bioactivity of a novel natural hydroxyapatite/zircon(NHA/zircon) nanobiocomposite coating on 316L stainless steel(SS) dental implants soaking in simulated body fluid. A novel NHA/zircon nanobiocomposite was fabricated with 0(control),5, 10, and 15 wt% of zircon in NHA using ball mill for 1 h. The composite mixture was coated on SS implants using a plasma spray method.Scanning electron microscopy(SEM) was used to evaluate surface morphology, and X-ray diffraction(XRD) was used to analyze phase composition and crystallinity(Xc). Further, calcium ion release was measured to evaluate the coated nanobiocomposite samples. The prepared NHA/zircon coating had a nanoscale morphological structure with a mean crystallite size of 30–40 nm in diameter and a bone-like composition,which is similar to that of the biological apatite of a bone. For the prepared NHA powder, high bioactivity was observed owing to the formation of apatite crystals on its surface. Both minimum crystallinity(Xc=41.1%) and maximum bioactivity occurred in the sample containing 10 wt% of zircon because of minimum Xcand maximum biodegradation of the coating sample.
ISSN:1002-0071
DOI:10.1016/j.pnsc.2014.04.001