Unified analytical solution for deep circular tunnel with consideration of seepage pressure, grouting and lining
A new unified analytical solution is presented for predicting the range of plastic zone and stress distributions around a deep circular tunnel in a homogeneous isotropic continuous medium. The rock mass, grouting zone and lining are assumed as elastic-perfectly plastic and governed by the unified st...
Gespeichert in:
Veröffentlicht in: | Journal of Central South University 2017-06, Vol.24 (6), p.1483-1493 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new unified analytical solution is presented for predicting the range of plastic zone and stress distributions around a deep circular tunnel in a homogeneous isotropic continuous medium. The rock mass, grouting zone and lining are assumed as elastic-perfectly plastic and governed by the unified strength theory (UST). This new solution has made it possible to consider the interaction between seepage pressure, lining, grouting and rock mass, and the intermediate principal stress effect together. Moreover, parametric analysis is carried out to identify the influence of the related parameters on the plastic zone radius. Under the given conditions, the results show that the plastic zone radius decreases with an increasing cohesion, internal friction angle and hydraulic conductivity of lining and unified failure criterion parameter, respectively; whereas the plastic zone radius increases with the growth of elasticity modulus of lining. Comparison of results from the new solution and the other published one shows well agreement and provides confidence in the new solution proposed. |
---|---|
ISSN: | 2095-2899 2227-5223 |
DOI: | 10.1007/s11771-017-3552-3 |