Experiment investigation on visualization and operating characteristics of closed loop plate oscillating heat pipe with parallel channels
Using ethanol or acetone as the working fluid, visualization of oscillations in steady state was observed visually by high-speed cameras, and temperature oscillating and heat transfer characteristics of closed-loop plate oscillating heat pipe with parallel channels (POHP-PC) were experimentally inve...
Gespeichert in:
Veröffentlicht in: | Journal of Central South University 2016-09, Vol.23 (9), p.2410-2418 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using ethanol or acetone as the working fluid, visualization of oscillations in steady state was observed visually by high-speed cameras, and temperature oscillating and heat transfer characteristics of closed-loop plate oscillating heat pipe with parallel channels (POHP-PC) were experimentally investigated by varying liquid filled ratios (50%, 70%, 85%), section scales (1 mm×1 mm and 1 mm×1.5 mm), inclination angles, working fluids and heating inputs. It was found that during operating there was mixed flow consisting of plug flow and annular flow in channels of oscillating heat pipe at steady-state. There was an equilibrium position for working fluid of condenser during oscillating, and periodic oscillations occurred up and down in the vicinity of equilibrium position. With heat input increasing, equilibrium position rose slowly as a result of vapor pressure of evaporation. Evaporation temperature oscillating amplitude possessed a trend of small-large-small and frequency trend was of small-large during steady-state. It may be generally concluded that temperature, whether evaporator or condenser, fluctuated sharply or rose continuously when oscillating heat pipe coming to dry burning state. Simultaneously, it was found that temperature difference of cooling water possibly dropped with heat input rising during dry burning state. Thermal resistance of No. 2 with acetone was lower than that of No. 1 during experiments, but No. 2 achieving heat transfer limit was earlier than No. 1. However, with ethanol, thermal resistance of No. 1 and No. 2 were similar with the heating input less than 110–120 W and filling ratios of 50% and 70%. And with filling ratio of 85%, heating transfer performance of No. 2 was better compared to No. 1 during all the experiments. |
---|---|
ISSN: | 2095-2899 2227-5223 |
DOI: | 10.1007/s11771-016-3300-0 |