Pedestrian environment prediction with different types of on-shore building distribution

The aim of this work is to evaluate how the building distribution influences the cooling effect of water bodies. Different turbulence models, including the S-A, SKE, RNG, Realizable, Low-KE and RSM model, were evaluated, and the CFD results were compared with wind tunnel experiment. The effects of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Central South University 2016-04, Vol.23 (4), p.955-968
1. Verfasser: 宋晓程 刘京 余磊
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this work is to evaluate how the building distribution influences the cooling effect of water bodies. Different turbulence models, including the S-A, SKE, RNG, Realizable, Low-KE and RSM model, were evaluated, and the CFD results were compared with wind tunnel experiment. The effects of the water body were detected by analyzing the water vapor distribution around it. It is found that the RNG model is the most effective model in terms of accuracy and computational economy. Next, the RNG model was used to simulate four waterfront planning cases to predict the wind, thermal and moisture environment in urban areas around urban water bodies. The results indicate that the building distribution, especially the height of the frontal building, has a larger effect on the water vapor dispersion, and indicate that the column-type distribution has a better performance than the enclosed-type distribution.
ISSN:2095-2899
2227-5223
DOI:10.1007/s11771-016-3143-8