A strip thickness prediction method of hot rolling based on D_S information reconstruction

To improve prediction accuracy of strip thickness in hot rolling, a kind of Dempster/Shafer(D_S) information reconstitution prediction method(DSIRPM) was presented. DSIRPM basically consisted of three steps to implement the prediction of strip thickness. Firstly, iba Analyzer was employed to analyze...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Central South University 2015-06, Vol.22 (6), p.2192-2200
1. Verfasser: 孙丽杰 邵诚 张利
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To improve prediction accuracy of strip thickness in hot rolling, a kind of Dempster/Shafer(D_S) information reconstitution prediction method(DSIRPM) was presented. DSIRPM basically consisted of three steps to implement the prediction of strip thickness. Firstly, iba Analyzer was employed to analyze the periodicity of hot rolling and find three sensitive parameters to strip thickness, which were used to undertake polynomial curve fitting prediction based on least square respectively, and preliminary prediction results were obtained. Then, D_S evidence theory was used to reconstruct the prediction results under different parameters, in which basic probability assignment(BPA) was the key and the proposed contribution rate calculated using grey relational degree was regarded as BPA, which realizes BPA selection objectively. Finally, from this distribution, future strip thickness trend was inferred. Experimental results clearly show the improved prediction accuracy and stability compared with other prediction models, such as GM(1,1) and the weighted average prediction model.
ISSN:2095-2899
2227-5223
DOI:10.1007/s11771-015-2743-z