Damage and penetration behavior of aluminum foam at various impacts

In this work, the damage and penetration behavior of aluminum foam at various types of impact were examined through experiments. The impact energy of a striker was applied on the fixed aluminum foam having a thickness of 25 mm while increasing its impact by 2 J at each strike from 6 J to 16 J. The r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Central South University 2014-09, Vol.21 (9), p.3442-3448
Hauptverfasser: Cho, Hosun, Cho, Jaeung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, the damage and penetration behavior of aluminum foam at various types of impact were examined through experiments. The impact energy of a striker was applied on the fixed aluminum foam having a thickness of 25 mm while increasing its impact by 2 J at each strike from 6 J to 16 J. The results show that the impact energies from 6 J to 12 J could not penetrate aluminum foam. However, the aluminum foam applied with the impact energy of 12 J incurred severe damages on its lower part. Finally, the aluminum foam applied with the impact energy of 14 J was penetrated. The striker having the impact energy of 6 J could penetrate aluminum foam around 10 mm. At this moment, aluminum foam could absorb the impact energy of around 9 J. When the impact energy of 14 J was applied on the aluminum foam, the aluminum foam was penetrated and it absorbed the impact energy of around 17.2 J. It is possible to create the safer structure against impact using the results of this work. The simulation results for the verification of the experimental results imply that the results for all the experiments in this work are reliable. It is possible to predict the structural safety of the aluminum foam for an impact if the impact behavior of aluminum foam performed in this work is utilized.
ISSN:2095-2899
2227-5223
DOI:10.1007/s11771-014-2320-x