Dynamic value iteration networks for the planning of rapidly changing UAV swarms
In an unmanned aerial vehicle ad-hoc network (UANET), sparse and rapidly mobile unmanned aerial vehicles (UAVs)/nodes can dynamically change the UANET topology. This may lead to UANET service performance issues. In this study, for planning rapidly changing UAV swarms, we propose a dynamic value iter...
Gespeichert in:
Veröffentlicht in: | Frontiers of information technology & electronic engineering 2021-05, Vol.22 (5), p.687-696 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In an unmanned aerial vehicle ad-hoc network (UANET), sparse and rapidly mobile unmanned aerial vehicles (UAVs)/nodes can dynamically change the UANET topology. This may lead to UANET service performance issues. In this study, for planning rapidly changing UAV swarms, we propose a dynamic value iteration network (DVIN) model trained using the episodic Q-learning method with the connection information of UANETs to generate a state value spread function, which enables UAVs/nodes to adapt to novel physical locations. We then evaluate the performance of the DVIN model and compare it with the non-dominated sorting genetic algorithm II and the exhaustive method. Simulation results demonstrate that the proposed model significantly reduces the decision-making time for UAV/node path planning with a high average success rate. |
---|---|
ISSN: | 2095-9184 2095-9230 |
DOI: | 10.1631/FITEE.1900712 |