Dynamic value iteration networks for the planning of rapidly changing UAV swarms

In an unmanned aerial vehicle ad-hoc network (UANET), sparse and rapidly mobile unmanned aerial vehicles (UAVs)/nodes can dynamically change the UANET topology. This may lead to UANET service performance issues. In this study, for planning rapidly changing UAV swarms, we propose a dynamic value iter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of information technology & electronic engineering 2021-05, Vol.22 (5), p.687-696
Hauptverfasser: Li, Wei, Yang, Bowei, Song, Guanghua, Jiang, Xiaohong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In an unmanned aerial vehicle ad-hoc network (UANET), sparse and rapidly mobile unmanned aerial vehicles (UAVs)/nodes can dynamically change the UANET topology. This may lead to UANET service performance issues. In this study, for planning rapidly changing UAV swarms, we propose a dynamic value iteration network (DVIN) model trained using the episodic Q-learning method with the connection information of UANETs to generate a state value spread function, which enables UAVs/nodes to adapt to novel physical locations. We then evaluate the performance of the DVIN model and compare it with the non-dominated sorting genetic algorithm II and the exhaustive method. Simulation results demonstrate that the proposed model significantly reduces the decision-making time for UAV/node path planning with a high average success rate.
ISSN:2095-9184
2095-9230
DOI:10.1631/FITEE.1900712