Influence of groundwater level changes on the seismic response of geosynthetic-reinforced soil retaining walls

Geosynthetic-reinforced soil retaining walls (GSRWs) have been widely used in civil engineering projects. However, as the climate changes, extreme weather conditions and natural hazards are likely to become more frequent or intense, posing a huge threat to the stability of GSRWs. In this paper, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Zhejiang University. A. Science 2022-11, Vol.23 (11), p.850-862
Hauptverfasser: Ren, Fei-fan, Huang, Qiang-qiang, Geng, Xue-yu, Wang, Guan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Geosynthetic-reinforced soil retaining walls (GSRWs) have been widely used in civil engineering projects. However, as the climate changes, extreme weather conditions and natural hazards are likely to become more frequent or intense, posing a huge threat to the stability of GSRWs. In this paper, the effect of groundwater level fluctuations on the seismic response of GSRWs is investigated. First, a dynamic numerical model was established and validated through centrifugal shaking-table test results. Using the established numerical model, the seismic response of GSRWs under four different groundwater level conditions was then investigated, i.e., an earthquake occurring at a low groundwater level (Case LW), an earthquake occurring when the groundwater level rises (Case RW), an earthquake occurring at a high groundwater level (Case HW), and an earthquake occurring when the groundwater level drops (Case DW). The results show that the GSRW in Case DW has the worst seismic stability because of the drag forces generated by the water flowing to the outside of the GSRW. For Case RW, deformation of the GSRW under earthquake forces was prevented by the drag forces generated by the water flowing to the inside of the GSRW and the water pressure acting on the outside of the facing, giving the GSRW the best seismic stability in this case. Compared with Case LW, the seismic stability of a GSRW in Case HW is worse, because the high groundwater level will generate excess pore-water pressure during an earthquake. On this basis, we provide engineering design suggestions to be considered by practitioners.
ISSN:1673-565X
1862-1775
DOI:10.1631/jzus.A2200188