ε-inclusion: privacy preserving re-publication of dynamic datasets
This paper presents a novel privacy principle, ε-inclusion, for re-publishing sensitive dynamic datasets, ε-inclusion releases all the quasi-identifier values directly and uses permutation-based method and substitution to anonymize the microdata. Combined with generalization-based methods, ε-inclusi...
Gespeichert in:
Veröffentlicht in: | Journal of Zhejiang University. A. Science 2008-08, Vol.9 (8), p.1124-1133 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a novel privacy principle, ε-inclusion, for re-publishing sensitive dynamic datasets, ε-inclusion releases all the quasi-identifier values directly and uses permutation-based method and substitution to anonymize the microdata. Combined with generalization-based methods, ε-inclusion protects privacy and captures a large amount of correlation in the microdata. We develop an effective algorithm for computing anonymized tables that obey the ε-inclusion privacy requirement. Extensive experiments confirm that our solution allows significantly more effective data analysis than generalization-based methods. |
---|---|
ISSN: | 1673-565X 1862-1775 |
DOI: | 10.1631/jzus.A071595 |