ε-inclusion: privacy preserving re-publication of dynamic datasets

This paper presents a novel privacy principle, ε-inclusion, for re-publishing sensitive dynamic datasets, ε-inclusion releases all the quasi-identifier values directly and uses permutation-based method and substitution to anonymize the microdata. Combined with generalization-based methods, ε-inclusi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Zhejiang University. A. Science 2008-08, Vol.9 (8), p.1124-1133
Hauptverfasser: Wei, Qiong, Lu, Yan-sheng, Zou, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a novel privacy principle, ε-inclusion, for re-publishing sensitive dynamic datasets, ε-inclusion releases all the quasi-identifier values directly and uses permutation-based method and substitution to anonymize the microdata. Combined with generalization-based methods, ε-inclusion protects privacy and captures a large amount of correlation in the microdata. We develop an effective algorithm for computing anonymized tables that obey the ε-inclusion privacy requirement. Extensive experiments confirm that our solution allows significantly more effective data analysis than generalization-based methods.
ISSN:1673-565X
1862-1775
DOI:10.1631/jzus.A071595