Enhanced control of DFIG-used back-to-back PWM VSC under unbalanced grid voltage conditions
TM315%TM614; This paper presents a unified positive- and negative-sequence dual-dq dynamic model of wind-turbine driven doublyfed induction generator (DFIG) under unbalanced grid voltage conditions. Strategies for enhanced control and operation of a DFIG-used back-to-back (BTB) PWM voltage source co...
Gespeichert in:
Veröffentlicht in: | Journal of Zhejiang University. A. Science 2007-07, Vol.8 (8), p.1330-1339 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | TM315%TM614; This paper presents a unified positive- and negative-sequence dual-dq dynamic model of wind-turbine driven doublyfed induction generator (DFIG) under unbalanced grid voltage conditions. Strategies for enhanced control and operation of a DFIG-used back-to-back (BTB) PWM voltage source converter (VSC) are proposed. The modified control design for the grid-side converter in the stationary αβ frames diminishes the amplitude of DC-link voltage ripples of twice the grid frequency, and the two proposed control targets for the rotor-side converter are alternatively achieved, which, as a result, improve the fault-ride through (FRT) capability of the DFIG based wind power generation systems during unbalanced network supply. A complete unbalanced control scheme with both grid- and rotor-side converters included is designed. Finally, simulation was carried out on a 1.5 MW wind-turbine driven DFIG system and the validity of the developed unified model and the feasibility of the proposed control strategies are all confirmed by the simulated results. |
---|---|
ISSN: | 1673-565X 1862-1775 |
DOI: | 10.1631/jzus.2007.A1330 |