Enhancement of the thermostability of β-1,3-1,4-glucanase by directed evolution
In order to improve the thermostability of β- 1,3-1,4-glucanase, evolutionary molecular engineering was used to evolve the β-1,3-1,4-glucanase from Bacillus subtilis ZJF-1A5. The process involves random mutation by error-prone PCR and DNA shuffling followed by screening on the filter-based assay. Tw...
Gespeichert in:
Veröffentlicht in: | Journal of Zhejiang University. A. Science 2006-11, Vol.7 (11), p.1948-1955 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to improve the thermostability of β- 1,3-1,4-glucanase, evolutionary molecular engineering was used to evolve the β-1,3-1,4-glucanase from Bacillus subtilis ZJF-1A5. The process involves random mutation by error-prone PCR and DNA shuffling followed by screening on the filter-based assay. Two mutants, EGsl and EGs2, were found to have four and five amino acid substitutions, respectively. These substitutions resulted in an increase in melting temperature from Tm=62.5℃ for the wild-type enzyme to Tm=65.5℃ for the mutant EGsl and 67.5℃ for the mutant EGs2. However, the two mutated enzymes had opposite approaches to produce reducing sugar from lichenin with either much higher (28%) for the former or much lower (21.6%) for the latter in comparison with their parental enzymes. The results demonstrate that directed evolution is an effective approach to improve the thermostability of a mesophilic enzyme. |
---|---|
ISSN: | 1673-565X 1009-3095 1862-1775 |
DOI: | 10.1631/jzus.2006.A1948 |