Parameter estimation of cutting tool temperature nonlinear model using PSO algorithm
In cutting tool temperature experiment, a large number of related data could be available. In order to define the relationship among the experiment data, the nonlinear regressive curve of cutting tool temperature must be constructed based on the data. This paper proposes the Particle Swarm Optimizat...
Gespeichert in:
Veröffentlicht in: | Journal of Zhejiang University. A. Science 2005-10, Vol.6 (10), p.1026-1029 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In cutting tool temperature experiment, a large number of related data could be available. In order to define the relationship among the experiment data, the nonlinear regressive curve of cutting tool temperature must be constructed based on the data. This paper proposes the Particle Swarm Optimization (PSO) algorithm for estimating the parameters such a curve. The PSO algorithm is an evolutional method based on a very simple concept. Comparison of PSO results with those of GA and LS methods showed that the PSO algorithm is more effective for estimating the parameters of the above curve. |
---|---|
ISSN: | 1673-565X 1009-3095 1862-1775 |
DOI: | 10.1631/jzus.2005.A1026 |