基于深度学习的配电网线路设备缺陷智能检测
TM764; 无人机配电线路巡检已经广泛开展应用,线路设备缺陷人工识别过程复杂、工作量较大等问题仍然存在.为了提高作业效率,根据无人机发展现状,对现有数据进行深入挖掘,利用标记系统对数据进行处理,再利用深度学习算法实现配电网无人机自动巡检、缺陷自动研判.该算法是基于残差双尺度检测器的巡检目标智能检测,优势在于可识别两种规格尺寸的目标对象,相比于传统的双阶段目标检测方案,其运行速度更快,更适合在终端资源受限设备中运行.目前该算法已达到95%的准确率....
Gespeichert in:
Veröffentlicht in: | 浙江电力 2021, Vol.40 (3), p.97-103 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | TM764; 无人机配电线路巡检已经广泛开展应用,线路设备缺陷人工识别过程复杂、工作量较大等问题仍然存在.为了提高作业效率,根据无人机发展现状,对现有数据进行深入挖掘,利用标记系统对数据进行处理,再利用深度学习算法实现配电网无人机自动巡检、缺陷自动研判.该算法是基于残差双尺度检测器的巡检目标智能检测,优势在于可识别两种规格尺寸的目标对象,相比于传统的双阶段目标检测方案,其运行速度更快,更适合在终端资源受限设备中运行.目前该算法已达到95%的准确率. |
---|---|
ISSN: | 1007-1881 |
DOI: | 10.19585/j.zjdl.202103015 |