基于自适应模糊神经网络的信息汇聚质量评估方法
针对信息质量评估系统中各环节影响因素的评估问题,提出了一种基于自适应模糊神经网络(FNN)的信息汇聚质量评估方法,从汇聚结果满足用户需求的角度判断信息汇聚质量的优劣。依据用户体验满意度调查数据,结合神经网络的自主学习与模糊控制的模糊推理能力,提出了该方法,并将生成的TS型模糊推理系统作为汇聚质量评估参考模型。试验结果表明,该方法预测汇聚质量可反映人工专家经验。...
Gespeichert in:
Veröffentlicht in: | 指挥信息系统与技术 2016, Vol.7 (2), p.38-42 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 针对信息质量评估系统中各环节影响因素的评估问题,提出了一种基于自适应模糊神经网络(FNN)的信息汇聚质量评估方法,从汇聚结果满足用户需求的角度判断信息汇聚质量的优劣。依据用户体验满意度调查数据,结合神经网络的自主学习与模糊控制的模糊推理能力,提出了该方法,并将生成的TS型模糊推理系统作为汇聚质量评估参考模型。试验结果表明,该方法预测汇聚质量可反映人工专家经验。 |
---|---|
ISSN: | 1674-909X |
DOI: | 10.15908/j.cnki.cist.2016.02.007 |