Application of direct laser metal tooling for AISI H13 tool steel

In the die industry, it is commonly agreed that residual tool life can be successfully extended by timely repair of damaged surfaces. Traditionally, the main repair process is tungsten inert gas (TIG) welding, but a new process called direct laser metal tooling (DLMT) emerges. DLMT is a manual proce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of Nonferrous Metals Society of China 2009-09, Vol.19 (z1), p.s284-s287
Hauptverfasser: LEE, Jae-Ho, JANG, Jeong-Hwan, JOO, Byeong-Don, YIM, Hong-Sup, MOON, Young-Hoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the die industry, it is commonly agreed that residual tool life can be successfully extended by timely repair of damaged surfaces. Traditionally, the main repair process is tungsten inert gas (TIG) welding, but a new process called direct laser metal tooling (DLMT) emerges. DLMT is a manual process, of which results depend on the materials of the powders and tools, the laser process and parameters. This technology is a direct-metal freeform fabrication technique in which a 200 W fiber laser is used. AISI H13 tool steel is a suitable material for die casting tools because of the high resistance to thermal fatigue and dimensional stability. In this research, AISI H13 tool steel was melted with metal powder by fiber laser. Before melting AISI H13, the powders were analyzed with XRF equipment. Then, hardness distribution of laser melted zone was investigated. The microstructure in laser melted zone was discussed. In order to identify the effect of particle size of powder on the melted zone, two types of particle sizes of powders were used. Experimental results show that the mold repair process using DLMT can be applied in the mold repair industry.
ISSN:1003-6326
DOI:10.1016/S1003-6326(10)60286-5