Oxidation behavior of oxidation protective coatings for C/C-SiC composites at 1 500
Porous carbon/carbon preforms were infiltrated with melted silicon to form C/C-SiC composites. Three-layer Si-Mo coating prepared by slurry painting and SiC/Si-Mo multilayer coating prepared by chemical vapor deposition(CVD) alternated with slurry painting were applied on C/C-SiC composites, respect...
Gespeichert in:
Veröffentlicht in: | Transactions of Nonferrous Metals Society of China 2009, Vol.19 (1), p.61-64 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Porous carbon/carbon preforms were infiltrated with melted silicon to form C/C-SiC composites. Three-layer Si-Mo coating prepared by slurry painting and SiC/Si-Mo multilayer coating prepared by chemical vapor deposition(CVD) alternated with slurry painting were applied on C/C-SiC composites, respectively. The oxidation of three samples at 1 500 ~C was compared. The results show that the C/C-SiC substrate is distorted quickly. Three-layer Si-Mo coating is out of service soon due to the formation of many bubbles on surface. The mass loss of coated sample is 0.76% after 1 h oxidation. The sample with SiC/Si-Mo multilayer coating gains mass even after 105 h oxidation. SiC/Si-Mo multilayer coating can provide longtime protection for C/C-SiC composites and has excellent thermal shock resistance. This is attributed to the combination of dense SiC layer and porous Si-Mo layer. Dense SiC layer plays the dual role of physical and chemical barrier, and resists the oxidation of porous Si-Mo layer. Porous Si-Mo layer improves the thermal shock resistance of the coating. |
---|---|
ISSN: | 1003-6326 |
DOI: | 10.1016/S1003-6326(08)60229-0 |