Conversion of polyaluminocarbosilane(PACS) to Si-Al-C-(O) fibers: evolutions and effect of oxygen

The evolvement of oxygen from polyaluminocarbosilane(PACS) to Si-Al-C-(O) fibers and its effect on properties were investigated by element analysis, solid-state 27Al nuclear magnetic resonance(NMR), Fourier transform infrared spectroscopy(FT-IR), thermo-gravimetric analyses(TGA), scanning electron m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of Nonferrous Metals Society of China 2006-04, Vol.16 (2), p.254-258
Hauptverfasser: ZHENG, Chun-man, LI, Xiao-dong, YU, Yu-xi, ZHAO, Da-fang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The evolvement of oxygen from polyaluminocarbosilane(PACS) to Si-Al-C-(O) fibers and its effect on properties were investigated by element analysis, solid-state 27Al nuclear magnetic resonance(NMR), Fourier transform infrared spectroscopy(FT-IR), thermo-gravimetric analyses(TGA), scanning electron microscope(SEM) and X-ray diffraction(XRD). Element analysis of PACS precursor polymer gives an empirical formula of SiC 2.1H 11.1O 0.12Al 0.024. 27Al NMR spectra mass gain shows that the oxygen of cured PACS fibers comes from aluminum aletylacetanate (Al(AcAc) 3) and the curing process. Oxygen content can be regarded as a constant mass during the pyrolysis process. During the sintering process of Si-Al-C-O fibers into Si-Al-C fibers, oxygen and carbon decreases with the release of a small amount of CO and/or SiO. Oxygen has a positive effect on the ceramic yield while has a negative effect on the crystallization of Si-Al-C-O fibers. It has great influence on mechanical properties of Si-Al-C-O and excellent tensile strength is usually obtained at the oxygen content of 8%-10%. The Si-Al-C-(O) fibers have excellent thermal stability and creep resistance.
ISSN:1003-6326
DOI:10.1016/S1003-6326(06)60043-5