New design of single-symbol decodable STBCs for MIMO communication system

Single-symbol maximum-likelihood (ML) decodable space-time block codes (SSDCs) can achieve a maximal symbol rate of 6/7 for multiple-input multiple-output (MIMO) communication system with five or six transmit antennas by using rate-efficient generalized coordinate interleaved orthogonal designs (RE-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of China universities of posts and telecommunications 2011-12, Vol.18 (6), p.44-50
Hauptverfasser: PHAM, Van-bien, QI, Bo-yu, SHENG, Wei-xing, MA, Xiao-feng, WANG, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Single-symbol maximum-likelihood (ML) decodable space-time block codes (SSDCs) can achieve a maximal symbol rate of 6/7 for multiple-input multiple-output (MIMO) communication system with five or six transmit antennas by using rate-efficient generalized coordinate interleaved orthogonal designs (RE-GCIODs). Unfortunately, there are many zero entries in the eodeword matrix of RE-GCIODs. The zero entries result in high peak-to-average power ratio (PAPR) and also impose a severe constraint on hardware implementation. In this paper, for MIMO communication systems with five or six transmit antennas and one receive antenna, a new SSDC is proposed. By combining Alamouti code and orthogonal space-time block code (OSTBC), desirable properties like RE-GCIODs can be achieved and are derived, including maximal symbol rate up to 6/7, full diversity and single-symbol ML decodability. Moreover, by reducing the number of zero entries in the codeword matrix, the peak-to-average power ratio (PAPR) of our proposed code is lower than RE-GCIODs. Simulation results show that the proposed codes outperform RE-GCIODs under peak power constraint while performing almost same under average power constraint.
ISSN:1005-8885
DOI:10.1016/S1005-8885(10)60121-5