Tuning Thermal Conductivity in Si Nanowires with Patterned Structures

Tuning the thermal conductivity of silicon nanowires (Si-NWs) is essential for realization of future thermoelectric devices. The corresponding management of thermal transport is strongly related to the scattering of phonons, which are the primary heat carriers in Si-NWs. Using the molecular dynamics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics letters 2021-02, Vol.38 (2), p.24401-45
Hauptverfasser: Zhu, Gui-ping, Zhao, Chang-wei, Wang, Xi-wen, Wang, Jian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tuning the thermal conductivity of silicon nanowires (Si-NWs) is essential for realization of future thermoelectric devices. The corresponding management of thermal transport is strongly related to the scattering of phonons, which are the primary heat carriers in Si-NWs. Using the molecular dynamics method, we find that the scattering of phonons from internal body defects is stronger than that from surface structures in the low-porosity range. Based on our simulations, we propose the concept of an exponential decay in thermal conductivity with porosity, specifically in the low-porosity range. In contrast, the thermal conductivity of Si-NWs with a higher porosity approaches the amorphous limit, and is insensitive to specific phonon scattering processes. Our findings contribute to a better understanding of the tuning of thermal conductivity in Si-NWs by means of patterned nanostructures, and may provide valuable insights into the optimal design of one-dimensional thermoelectric materials.
ISSN:0256-307X
1741-3540
DOI:10.1088/0256-307X/38/2/024401