Real-time dynamics in strongly correlated quantum-dot systems

We investigate the real-time dynamical properties of Rabi-type oscillation through strongly correlated quantum-dot systems by means of accurate hierarchical equations of motion. It is an extension of the hierarchical Liouville-space approach for addressing strongly correlated quantum-dot systems. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2023-12, Vol.32 (12), p.127302-584
Hauptverfasser: Cheng, Yong-Xi, Li, Zhen-Hua, Wei, Jian-Hua, Luo, Hong-Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the real-time dynamical properties of Rabi-type oscillation through strongly correlated quantum-dot systems by means of accurate hierarchical equations of motion. It is an extension of the hierarchical Liouville-space approach for addressing strongly correlated quantum-dot systems. We study two paradigmatic models, the single quantum-dot system, and serial coupling double quantum-dot system. We calculate accurately the time-dependent occupancy of quantum-dot systems subject to a sudden change of gate voltage. The Rabi-type oscillation of the occupancy and distinct relaxation time of the quantum-dot systems with different factors are described. This is helpful to understand dissipation and decoherence in real-time dynamics through nanodevices and provides a theoretical frame to experimental investigation and manipulation of molecular electronic devices.
ISSN:1674-1056
2058-3834
DOI:10.1088/1674-1056/acf448