Flow control performance evaluation of a tri-electrode sliding discharge plasma actuator
Tri-electrode sliding discharge (TED) plasma actuators are formed by adding a direct current (DC) exposed electrode to conventional dielectric barrier discharge (DBD) plasma actuators. There are three TED modes depending on the polarity and amplitude of the DC supply: DBD discharge, extended dischar...
Gespeichert in:
Veröffentlicht in: | Chinese physics B 2023-09, Vol.32 (9), p.95203-401 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tri-electrode sliding discharge (TED) plasma actuators are formed by adding a direct current (DC) exposed electrode to conventional dielectric barrier discharge (DBD) plasma actuators. There are three TED modes depending on the polarity and amplitude of the DC supply: DBD discharge, extended discharge and sliding discharge. This paper evaluates the electrical, aerodynamic and mechanical characteristics of a TED plasma actuator based on energy analysis, particle image velocimetry experiments and calculations using the Navier–Stokes equation. The flow control performances of different discharge modes are quantitatively analyzed based on characteristic parameters. The results show that flow control performance in both extended discharge and sliding discharge is more significant than that of DBD, mainly because of the significantly higher (up to 141%) body force of TED compared with DBD. However, conductivity loss is the primary power loss caused by the DC polarity for TED discharge. Therefore, power consumption can be reduced by optimizing the dielectric material and thickness, thus improving the flow control performance of plasma actuators. |
---|---|
ISSN: | 1674-1056 |
DOI: | 10.1088/1674-1056/acae76 |