Modulation of CO adsorption on 4,12,2-graphyne by Fe atom doping and applied electric field
Adsorption characteristics of CO adsorbed on pristine 4,12,2-graphyne (4,12,2-G) and Fe-doped 4,12,2-graphyne (Fe-4,12,2-G) are studied by first-principles calculations. It is shown that CO is only physically adsorbed on pristine 4,12,2-G. Fe atoms can be doped into 4,12,2-G stably and lead to band...
Gespeichert in:
Veröffentlicht in: | Chinese physics B 2023-07, Vol.32 (8), p.87101-423 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Adsorption characteristics of CO adsorbed on pristine 4,12,2-graphyne (4,12,2-G) and Fe-doped 4,12,2-graphyne (Fe-4,12,2-G) are studied by first-principles calculations. It is shown that CO is only physically adsorbed on pristine 4,12,2-G. Fe atoms can be doped into 4,12,2-G stably and lead to band gap opening. After doping, the interaction between Fe-4,12,2-G and CO is significantly enhanced and chemisorption occurs. The maximum adsorption energy reaches −1.606 eV. Meanwhile, the charge transfer between them increases from 0.009
e
to 0.196
e
. Moreover, the electric field can effectively regulate the adsorption ability of the Fe-4,12,2-G system, which is expected to achieve the capture and release of CO. Our study is helpful to promote applications of two-dimensional carbon materials in gas sensing and to provide new ideas for reversible CO sensor research. |
---|---|
ISSN: | 1674-1056 |
DOI: | 10.1088/1674-1056/acc935 |