An n–n type heterojunction enabling highly efficient carrier separation in inorganic solar cells

Carrier separation in a solar cell usually relies on the p–n junction. Here we show that an n–n type inorganic semiconductor heterojunction is also able to separate the exciton for efficient solar cell applications. The n–n type heterojunction was formed by hydrothermal deposition of Sb 2 (S,Se) 3 a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2022-03, Vol.31 (3), p.38803-71
Hauptverfasser: Li, Gang, Huang, Yuqian, Tang, Rongfeng, Che, Bo, Xiao, Peng, Lian, Weitao, Zhu, Changfei, Chen, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carrier separation in a solar cell usually relies on the p–n junction. Here we show that an n–n type inorganic semiconductor heterojunction is also able to separate the exciton for efficient solar cell applications. The n–n type heterojunction was formed by hydrothermal deposition of Sb 2 (S,Se) 3 and thermal evaporation of Sb 2 Se 3 . We found that the n–n junction is able to enhance the carrier separation by the formation of an electric field, reduce the interfacial recombination and generate optimized band alignment. The device based on this n–n junction shows 2.89% net efficiency improvement to 7.75% when compared with the device consisted of semiconductor absorber–metal contact. The study in the n–n type solar cell is expected to bring about more versatile materials utility, new interfacial engineering strategy and fundamental findings in the photovoltaic energy conversion process.
ISSN:1674-1056
DOI:10.1088/1674-1056/ac4022