Response of HD-V2 radiochromic film to argon ions
A two-dimensional dose detector for ion beam is required in many high energy density physics experiments. As a solid detector, the GAFChromic film offers a good spatial resolution and dosimetric accuracy. For an absolute dose measurement, the relative effectiveness, which represents the darkening ef...
Gespeichert in:
Veröffentlicht in: | Chinese physics B 2021-08, Vol.30 (8), p.80702-322 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A two-dimensional dose detector for ion beam is required in many high energy density physics experiments. As a solid detector, the GAFChromic film offers a good spatial resolution and dosimetric accuracy. For an absolute dose measurement, the relative effectiveness, which represents the darkening efficiency of the film to a radiation source, needs to be taken into consideration. In this contribution, the dose-response of HD-V2 to argon ions is presented for the first time. The calibration was taken over the dose range of 65 Gy–660 Gy with 8-keV argon ions. The response of net optical density is from 0.01 to 0.05. Triple-color dose-response functions are derived. The relative effectiveness for the argon ion beams is about 5%, much lower than that of protons and carbon ions. To explain this effect, the inactivation probability based on track theory of ion bombardment is proposed. Furthermore, a theoretical prediction of the relative effectiveness for single ion is presented, showing the dependence of the darkening efficiency on the atomic number and the incident energy of ions. |
---|---|
ISSN: | 1674-1056 |
DOI: | 10.1088/1674-1056/ac077f |