First-principles analysis of phonon thermal transport properties of two-dimensional WS2/WSe2 heterostructures

The van der Waals(vdW)heterostructures of bilayer transition metal dichalcogenide obtained by vertically stack-ing have drawn increasing attention for their enormous potential applications in semiconductors and insulators.Here,by using the first-principles calculations and the phonon Boltzmann trans...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:中国物理B(英文版) 2021-03, Vol.30 (3), p.27-38
Hauptverfasser: Zheng Chang, Kunpeng Yuan, Zhehao Sun, Xiaoliang Zhang, Yufei Gao, Xiaojing Gong, Dawei Tang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The van der Waals(vdW)heterostructures of bilayer transition metal dichalcogenide obtained by vertically stack-ing have drawn increasing attention for their enormous potential applications in semiconductors and insulators.Here,by using the first-principles calculations and the phonon Boltzmann transport equation(BTE),we studied the phonon transport properties of WS2/WSe2 bilayer heterostructures(WS2/WSe2-BHs).The lattice thermal conductivity of the ideal WS2/WSe2-BHs crystals at room temperature(RT)was 62.98 W/mK,which was clearly lower than the average lattice ther-mal conductivity of WS2 and WSe2 single layers.Another interesting finding is that the optical branches below 4.73 THz and acoustic branches have powerful coupling,mainly dominating the lattice thermal conductivity.Further,we also noticed that the phonon mean free path(MFP)of the WS2/WSe2-BHs(233 nm)was remarkably attenuated by the free-standing monolayer WS2(526 nm)and WSe2(1720 nm),leading to a small significant size effect of the WS2/WSe2-BHs.Our results systematically demonstrate the low optical and acoustic phonon modes-dominated phonon thermal transport in het-erostructures and give a few important guidelines for the synthesis of van der Waals heterostructures with excellent phonon transport properties.
ISSN:1674-1056
DOI:10.1088/1674-1056/abd2a6