Snapback-free shorted anode LIGBT with controlled anode barrier and resistance

A novel shorted anode lateral-insulated gate bipolar transistor (SA LIGBT) with snapback-free characteristic is proposed and investigated. The device features a controlled barrier V barrier and resistance R SA in anode, named CBR LIGBT. The electron barrier is formed by the P-float/N-buffer junction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2021-02, Vol.30 (2), p.28501-635
Hauptverfasser: Li, Shun, Zhang, Jin-Sha, Chen, Wei-Zhong, Huang, Yao, He, Li-Jun, Huang, Yi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel shorted anode lateral-insulated gate bipolar transistor (SA LIGBT) with snapback-free characteristic is proposed and investigated. The device features a controlled barrier V barrier and resistance R SA in anode, named CBR LIGBT. The electron barrier is formed by the P-float/N-buffer junction, while the anode resistance includes the polysilicon layer and N-float. At forward conduction stage, the V barrier and R SA can be increased by adjusting the doping of the P-float and polysilicon layer, respectively, which can suppress the unipolar mode to eliminate the snapback. At turn-off stage, the low-resistance extraction path (N-buffer/P-float/polysilicon layer/N-float) can quickly extract the electrons in the N-drift, which can effectively accelerate the turn-off speed of the device. The simulation results show that at the same V on of 1.3 V, the E off of the CBR LIGBT is reduced by 85%, 73%, and 59.6% compared with the SSA LIGBT, conventional LIGBT, and TSA LIGBT, respectively. Additionally, at the same E off of 1.5 mJ/cm 2 , the CBR LIGBT achieves the lowest V on of 1.1 V compared with the other LIGBTs.
ISSN:1674-1056
DOI:10.1088/1674-1056/abb7fc