Towards a gravitation theory in Berwald-Finsler space
Finsler geometry is a natural and fundamental generalization of Riemann geometry. The Finsler structure depends on both coordinates and velocities. It is defined as a function on tangent bundle of a manifold. We use the Bianchi identities satisfied by the Chern curvature to set up a gravitation theo...
Gespeichert in:
Veröffentlicht in: | Chinese physics C 2010, Vol.34 (1), p.28-34 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Finsler geometry is a natural and fundamental generalization of Riemann geometry. The Finsler structure depends on both coordinates and velocities. It is defined as a function on tangent bundle of a manifold. We use the Bianchi identities satisfied by the Chern curvature to set up a gravitation theory in Berwald-Finsler space. The geometric part of the gravitational field equation is nonsymmetric in general. This indicates that the local Lorentz invariance is violated. |
---|---|
ISSN: | 1674-1137 0254-3052 2058-6132 |
DOI: | 10.1088/1674-1137/34/1/005 |