Shortest link scheduling in wireless networks with oblivious power control

Link scheduling has always been a fundamental problem in wireless networks for its direct impacts on the performance of wireless networks such as throughput capacity, transmission delay, lifetime, etc. Existing work is mainly established under graph-based models, which are not only impractical but a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:China communications 2021-04, Vol.18 (4), p.137-152
Hauptverfasser: Ma, Chunmei, Yu, Jiguo, Huang, Baogui, Meng, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Link scheduling has always been a fundamental problem in wireless networks for its direct impacts on the performance of wireless networks such as throughput capacity, transmission delay, lifetime, etc. Existing work is mainly established under graph-based models, which are not only impractical but also incorrect due to the essentially fading characteristics of signals. In this paper, we study the shortest link scheduling problem under two more realistic models, namely the signal to interference plus noise ratio (SINR) model and the Rayleigh fading model. We propose a centralized square-based scheduling algorithm (CSSA) with oblivious power control under the SINR model and prove its correctness under both the SINR model and the Rayleigh fading model. Furthermore, we extend CSSA and propose a distributed square-based scheduling algorithm (DSSA). Note that DSSA adopts CSMA/CA so that a wireless node can compete for the wireless channel before starting its communication. We also show theoretical analysis and conduct extensive simulations to exhibit the correctness and efficiency of our algorithms.
ISSN:1673-5447
DOI:10.23919/JCC.2021.04.011