Spectrum sensing based on deep learning classification for cognitive radios

Spectrum sensing is a key technology for cognitive radios. We present spectrum sensing as a classification problem and propose a sensing method based on deep learning classification. We normalize the received signal power to overcome the effects of noise power uncertainty. We train the model with as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:China communications 2020-02, Vol.17 (2), p.138-148
Hauptverfasser: Zheng, Shilian, Chen, Shichuan, Qi, Peihan, Zhou, Huaji, Yang, Xiaoniu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spectrum sensing is a key technology for cognitive radios. We present spectrum sensing as a classification problem and propose a sensing method based on deep learning classification. We normalize the received signal power to overcome the effects of noise power uncertainty. We train the model with as many types of signals as possible as well as noise data to enable the trained network model to adapt to untrained new signals. We also use transfer learning strategies to improve the performance for real-world signals. Extensive experiments are conducted to evaluate the performance of this method. The simulation results show that the proposed method performs better than two traditional spectrum sensing methods, i.e., maximum-minimum eigenvalue ratio-based method and frequency domain entropy-based method. In addition, the experimental results of the new untrained signal types show that our method can adapt to the detection of these new signals. Furthermore, the real-world signal detection experiment results show that the detection performance can be further improved by transfer learning. Finally, experiments under colored noise show that our proposed method has superior detection performance under colored noise, while the traditional methods have a significant performance degradation, which further validate the superiority of our method.
ISSN:1673-5447
DOI:10.23919/JCC.2020.02.012