Top-K Query Framework in Wireless Sensor Networks for Smart Grid

The smart grid has caught great attentions in recent years, which is poised to transform a centralized, producer-controlled network to a decentralized, consumer- interactive network that's supported by fine-grained monitoring. Large-scale WSNs (Wireless Sensor Networks) have been considered one of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:China communications 2014-06, Vol.11 (6), p.89-98
Hauptverfasser: Hui, Wang, Zhitao, Guan, Tingting, Yang, Yue, Xu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The smart grid has caught great attentions in recent years, which is poised to transform a centralized, producer-controlled network to a decentralized, consumer- interactive network that's supported by fine-grained monitoring. Large-scale WSNs (Wireless Sensor Networks) have been considered one of the very promising technologies to support the implementation of smart grid. WSNs are applied in almost every aspect of smart grid, including power generation, power transmission, power distribution, power utilization and power dispatch, and the data query processing of 'WSNs in power grid' become an hotspot issue due to the amount of data of power grid is very large and the requirement of response time is very high. To meet the demands, top-k query processing is a good choice, which performs the cooperative query by aggregating the database objects' degree of match for each different query predicate and returning the best k matching objects. In this paper, a framework that can effectively apply top-k query to wireless sensor network in smart grid is proposed, which is based on the cluster-topology sensor network. In the new method, local indices are used to optimize the necessary query routing and process intermediate results inside the cluster to cut down the data traffic, and the hierarchical join query is executed based on the local results.Besides, top-k query results are verified by the clean-up process, and two schemes are taken to deal with the problem of node's dynamicity, which further reduce communication cost. Case studies and experimental results show that our algorithm has outperformed the current existing one with higher quality results and better efficiently.
ISSN:1673-5447
DOI:10.1109/CC.2014.6879007