Changes in P2Y purinoreceptor-mediated intracellular calcium signal pathways results in inositol-1,4, 5-triphosphate-sensitive calcium stores in rat small trigeminal ganglion neurons

BACKGROUND: Most of the currently available information on purinergic receptors (P2Rs) involved in pain transmission is based on results obtained in dorsal root ganglion or the spinal cord. However, the mechanism of P2Rs in trigeminal neuralgia remains unclear. OBJECTIVE: To investigate changes in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural regeneration research 2010-06, Vol.5 (12), p.906-910
1. Verfasser: Yuanyin Wang Andong Liu Jie Lei Min Xie Zhongwen Li Liecheng Wang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:BACKGROUND: Most of the currently available information on purinergic receptors (P2Rs) involved in pain transmission is based on results obtained in dorsal root ganglion or the spinal cord. However, the mechanism of P2Rs in trigeminal neuralgia remains unclear. OBJECTIVE: To investigate changes in the P2R-mediated calcium signaling pathway in nociceptive trigemJnal ganglion neurons. DESIGN, TIME AND SETTING: In vitro experiments were conducted at the Patch-Clamp Laboratory of Comprehensive Experiment Center of Anhui Medical University, China from September 2008 to June 2009. MATERIALS: Thapsigargin, caffeine, suramin, and adenosine 5'-triphosphate were purchased from Sigma, USA. METHODS: Using Fura-2-based microfluorimetry, intracellular calcium concentration ([Ca^2+]i) was measured in freshly isolated adult rat small trigeminal ganglion neurons before and after drug application. MAIN OUTCOME MEASURES: Fluorescent intensities were expressed as the ratio F340/F380 to observe [Ca^2+]i changes. RESULTS: In normal extracellular solution and Ca^2+-free solution, application of thapsigargin (1 μmol/L), a sarcoplasmic reticulum Ca^2+ pump adenosine 5'-triphosphate inhibitor, as well as caffeine (20 mmol/L), a ryanodine receptor agonist, triggered [Ca^2+]i increase in small trigeminal ganglion neurons. A similar response was induced by application of adenosine 5'-triphosphate (100 μmol/L). In Ca^2+-free conditions, adenosine 5'-triphosphate-induced [Ca^2+]i transients in small trigeminal ganglion neurons were inhibited in cells pre-treated with thapsigargin (P 〈 0.01), but not by caffeine (P 〉 0.05). In normal, extracellular solution, adenosine 5'-triphosphate-induced [Ca^2+]i transients in small trigeminal ganglion neurons were partly inhibited in cells pre-treated with thapsigargin (P 〈 0.05). CONCLUSION: Inositol-1,4, 5-triphosphate (IP3)- and ryanodine-sensitive Ca^2+ stores exist in rat nociceptive trigeminal ganglion neurons. Two pathways are involved in the purinoreceptor-mediated [Ca^2+]i rise observed in nociceptive trigeminal ganglion neurons. One pathway involves the metabotropic P2Y receptors, which are associated with the IP3 sensitive Ca^2+store, and the second pathway is coupled to ionotropic P2X receptors that induce the Ca^2+ influx.
ISSN:1673-5374
DOI:10.3969/j.issn.1673-5374.2010.12.005