基于ARIMA与NNAR模型的中国慢性阻塞性肺疾病疾病负担预测研究
R563.9%R-05; 背景 中国是慢性阻塞性肺疾病(COPD)疾病负担较为严重的国家之一,COPD已成为中国的第三大致死病因,其在全部疾病伤残调整寿命年(DALYs)排名中位居第三位.基于患病率、死亡率和DALYs率实现对COPD疾病负担的有效预测,可为预防和控制措施的制定提供理论支持.目的 描述和分析1990—2019年中国COPD疾病负担状况及其变化趋势,并预测2020—2024年中国COPD疾病负担,旨在为中国COPD科学防控提供依据.方法 于2021年12月,从2019年全球疾病负担(GBD 2019)中提取1990—2019年中国COPD患病率、死亡率及DALYs率等疾病负担指标...
Gespeichert in:
Veröffentlicht in: | 中国全科医学 2022-06, Vol.25 (16), p.1942-1949 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | R563.9%R-05; 背景 中国是慢性阻塞性肺疾病(COPD)疾病负担较为严重的国家之一,COPD已成为中国的第三大致死病因,其在全部疾病伤残调整寿命年(DALYs)排名中位居第三位.基于患病率、死亡率和DALYs率实现对COPD疾病负担的有效预测,可为预防和控制措施的制定提供理论支持.目的 描述和分析1990—2019年中国COPD疾病负担状况及其变化趋势,并预测2020—2024年中国COPD疾病负担,旨在为中国COPD科学防控提供依据.方法 于2021年12月,从2019年全球疾病负担(GBD 2019)中提取1990—2019年中国COPD患病率、死亡率及DALYs率等疾病负担指标的数据,采用平均年度变化百分比(AAPC)分析其变化趋势.基于1990—2016年数据(训练集)建立COPD患病率、死亡率及DALYs率的自回归移动平均(ARIMA)模型和神经网络自回归(NNAR)模型,利用2017—2019年数据(测试集)进行模型评价.采用预测值与实际值的相对误差、平均绝对百分误差(MAPE)、平均绝对误差(MAE)和均方根误差(RMSE)比较模型的拟合和预测效果,运用最佳模型预测2020—2024年中国COPD疾病负担.结果 1990—2019年:中国全人群COPD患病率从2344.40/105增长至3175.37/105,年均增长1.04%,男性和女性的COPD患病率平均每年分别增长0.92%和1.13%;中国全人群COPD死亡率由105.09/105下降至72.94/105,年均降幅为1.29%,男性和女性的COPD死亡率均呈下降趋势,平均每年分别下降0.83%和1.83%;中国全人群DALYs率从2206.55/105下降至1400.71/105,年均下降1.56%,男性和女性的COPD DALYs率均呈下降趋势,平均每年分别下降1.37%和1.86%.ARIMA和NNAR模型预测值的动态趋势与实际情况基本一致,但ARIMA模型的预测值与实际值相对误差、MAPE、MAE和RMSE更小,预测精度更高.经ARIMA模型预测得到2020—2024年中国COPD患病率分别为3229.77/105、3262.44/105、3292.38/105、3322.31/105、3352.25/105,死亡率分别为74.50/105、75.49/105、76.11/105、76.50/105、76.75/105,DA |
---|---|
ISSN: | 1007-9572 |
DOI: | 10.12114/j.issn.1007-9572.2022.0045 |