基于波形特征和决策树分类算法的岩体破裂信号识别

TD235%TD326; 微震监测技术能够捕捉开采扰动下岩体响应信息,已被广泛应用于岩体稳定性分析与矿山安全生产管理.受矿山现场频繁生产活动的影响,微震监测系统能够捕捉到不同类型信号,导致噪音信号较多,无法及时有效地揭示开采扰动下岩体响应规律.本文依托阿舍勒铜矿微震监测,分析了微震系统采集典型信号波形参数特征的差异,提出了基于决策树分类算法的岩体破裂信号识别方法,并对其识别精度进行了对比分析.研究结果表明,电气噪音信号、爆破信号、机械振动信号、岩石破裂信号的持续时间、上升时间、振铃数、上升振铃数、最大振幅、主频等参数分布范围存在不同程度的重合,无法采用单一参数有效识别岩体破裂信号,消除噪音信号...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:中国矿业 2022, Vol.31 (11), p.158-164
Hauptverfasser: 龙翼, 王培武, 皇甫风成, 陈天晓, 徐世达
Format: Magazinearticle
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:TD235%TD326; 微震监测技术能够捕捉开采扰动下岩体响应信息,已被广泛应用于岩体稳定性分析与矿山安全生产管理.受矿山现场频繁生产活动的影响,微震监测系统能够捕捉到不同类型信号,导致噪音信号较多,无法及时有效地揭示开采扰动下岩体响应规律.本文依托阿舍勒铜矿微震监测,分析了微震系统采集典型信号波形参数特征的差异,提出了基于决策树分类算法的岩体破裂信号识别方法,并对其识别精度进行了对比分析.研究结果表明,电气噪音信号、爆破信号、机械振动信号、岩石破裂信号的持续时间、上升时间、振铃数、上升振铃数、最大振幅、主频等参数分布范围存在不同程度的重合,无法采用单一参数有效识别岩体破裂信号,消除噪音信号的影响.采用决策树分类算法构建岩体破裂信号识别模型,能够有效消除噪音信号的影响,识别准确率达97.8%,显著高于支持向量机(SVM)模型73.9% 的准确率.研究成果对于快速圈定、预警岩体破坏高风险区域具有重要意义.
ISSN:1004-4051
DOI:10.12075/j.issn.1004-4051.2022.11.024