基于趋势信息的时间序列分类方法
TP391; 大部分时间序列数据分析的一个重要组成部分是相似性度量方式.在众多相似性度量方式中,基于最长公共子序列的相似性度量方式是一种常用的有效方法,但该方法仅仅度量序列点对点的数值差异,而忽略了序列的变化趋势.为此提出一种基于趋势信息的时间序列离散化方法并用最长公共子序列进行相似性度量.该方法能够很好地度量时间序列的趋势信息.此外,还将其与现有的点对点函数线性结合.与现有相似性度量方法不同,该方法能同时考虑时间序列的趋势信息和函数距离,相似性度量方案运用最近邻分类算法规则进行分类.为了进行全面的比较,在42个时间序列数据集上测试该算法的有效性.实验结果表明,所提出的方法能有效提高时间序列分...
Gespeichert in:
Veröffentlicht in: | 中国科学技术大学学报 2019, Vol.49 (2), p.138-148 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | TP391; 大部分时间序列数据分析的一个重要组成部分是相似性度量方式.在众多相似性度量方式中,基于最长公共子序列的相似性度量方式是一种常用的有效方法,但该方法仅仅度量序列点对点的数值差异,而忽略了序列的变化趋势.为此提出一种基于趋势信息的时间序列离散化方法并用最长公共子序列进行相似性度量.该方法能够很好地度量时间序列的趋势信息.此外,还将其与现有的点对点函数线性结合.与现有相似性度量方法不同,该方法能同时考虑时间序列的趋势信息和函数距离,相似性度量方案运用最近邻分类算法规则进行分类.为了进行全面的比较,在42个时间序列数据集上测试该算法的有效性.实验结果表明,所提出的方法能有效提高时间序列分类准确率. |
---|---|
ISSN: | 0253-2778 |
DOI: | 10.3969/j.issn.0253-2778.2019.02.009 |