Magnetic filtration of an iron oxide aerosol by means of magnetizable grates

The cleaning of gases with low concentrations of small ferromagnetic or paramagnetic particles is a difficult task for conventional filtration. A new alternative procedure, magnetic filtration, is used in this work. Iron oxide aerosol was generated by elutriation of iron oxide particles from a fluid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:China particuology 2007-02, Vol.5 (1), p.140-144
Hauptverfasser: Alvaro, A., Rodríguez, J.M., Augusto, Paulo A., Estévez, A.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The cleaning of gases with low concentrations of small ferromagnetic or paramagnetic particles is a difficult task for conventional filtration. A new alternative procedure, magnetic filtration, is used in this work. Iron oxide aerosol was generated by elutriation of iron oxide particles from a fluidized bed consisting of a mixture of Geldart-C iron oxide powder and large spherical Geldart-B sand particles. The aerosol was filtered by means of a magnetic filter which consisted of one, two or three iron grates staggered to each other. The experimental installation contained also an isokinetic sampling system and a Microtrac SRA 150 Particle Analyser. A theoretical expression for filtration efficiency was deduced from a previous model taking into account the different forces acting on the iron oxide particles. Experimental filtration efficiency matches quite well calculated theoretical efficiency. It was found that an increase in particle size, in the number of grates or in the applied magnetic field produced higher filtration efficiencies up to 100% in some cases. In all filtration experiments pressure drop through the magnetic filter was very small.
ISSN:1672-2515
DOI:10.1016/j.cpart.2006.12.006