An ESIPT-based NIR-fluorescent probe for exosome labeling and in situ imaging
Exosomes play significant roles in physiological and tumorigenic processes and it is desirable to visualize and track the exosomes. Herein, a novel amphiphilic fluorescent probe HBT-Exo based on excited-state intramolecular proton transfer (ESIPT) mechanism is reported for exosome-labeling. Its ESIP...
Gespeichert in:
Veröffentlicht in: | Chinese chemical letters 2023-11, Vol.34 (11), p.108273-224, Article 108273 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Exosomes play significant roles in physiological and tumorigenic processes and it is desirable to visualize and track the exosomes. Herein, a novel amphiphilic fluorescent probe HBT-Exo based on excited-state intramolecular proton transfer (ESIPT) mechanism is reported for exosome-labeling. Its ESIPT characteristics were confirmed by both theory calculation and experimental observation, which enable the probe to show a large Stokes shift as well as near-infrared (NIR) keto-form emission. HBT-Exo displayed excellent biocompatibility and remarkable efficiency for exosome-labeling in gastric cancer cells. Furthermore, the labeled exosomes were successfully applied for the real-time in situ imaging in mouse models.
Schematic illustration of HBT-Exo as a fluorescence exosome-labeling tool. [Display omitted] |
---|---|
ISSN: | 1001-8417 1878-5964 |
DOI: | 10.1016/j.cclet.2023.108273 |