Interwoven nickel(II)-dimethylglyoxime nanowires in 3D nickel foam for dendrite-free lithium deposition

Metal skeletons, such as Nickel Foam (NF) has attracted worldwide interests as stable host for lithium metal anode because of its high stability, large specific surface area and high conductivity. However, most metal skeletons have lithophobic surface and uneven current distribution that result in s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese chemical letters 2022-04, Vol.33 (4), p.2165-2170
Hauptverfasser: Zhou, Tianyi, Mu, Yanlu, Wu, Jianyang, Zhong, Bing, Yang, Chengkai, Wang, Qian, Liu, Wen, Zhou, Henghui, Jiang, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metal skeletons, such as Nickel Foam (NF) has attracted worldwide interests as stable host for lithium metal anode because of its high stability, large specific surface area and high conductivity. However, most metal skeletons have lithophobic surface and uneven current distribution that result in sporadic lithium nucleation and uncontrolled dendrites growth. Herein, we describe a sequential immersing strategy to generate interwoven Nickel(II)-dimethylglyoxime (Ni-DMG) nanowires at NF to obtain composite skeleton (NDNF), which can be used as an stable host for Li metal storage. The Ni-DMG has proved effective to realize uniform lithium nucleation and dendrite-free lithium deposition. Combing with the three dimensional (3D) hierarchical porous structure, the composite host shows a significantly improved coulombic efficiency (CE) than pristine commercial nickel foam. Moreover, the corresponding Li||Li symmetrical cells can run more than 700 h with low voltage hysteresis 22 mV at 1.0 mA/cm2, and Li@NDNF||LiFePO4 full-cell exhibits a high capacity retention of 82.03% at 1.0 C during 630 cycles. These results proved the effectiveness of metal-organic complexes in governing Li metal growth and can be employed as a new strategy for dendrite-free Li metal anode and safe Li metal batteries (LMBs). [Display omitted] An composited skeleton based on Ni foam was fabricated by a facile sequential immersing treatment, in which homogenous covered interwoven nickel(II)dimethylglyoxime nanowires help realizing uniform lithium deposition, leading to a promoting cycling performance of lithium metal anode.
ISSN:1001-8417
1878-5964
DOI:10.1016/j.cclet.2021.10.051