Ferriporphyrin-inspired MOFs as an artificial metalloenzyme for highly sensitive detection of H2O2 and glucose

In this work, inspired by the active sites of ferriporphyrin-based metalloenzymes, Fe-MOFs by using ferric as the metal center and a porphyrin analog as the organic ligand were developed as an artificial metalloenzyme, offering an efficient strategy for the development of highly stable and efficient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese chemical letters 2020-06, Vol.31 (6), p.1398-1401
Hauptverfasser: Chen, Jiajia, Gao, Huajian, Li, Zhihao, Li, Yingxue, Yuan, Quan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, inspired by the active sites of ferriporphyrin-based metalloenzymes, Fe-MOFs by using ferric as the metal center and a porphyrin analog as the organic ligand were developed as an artificial metalloenzyme, offering an efficient strategy for the development of highly stable and efficient metalloenzymes, showing great potential in catalysis, energy transfer, biosensing and medical diagnosis. [Display omitted] Metalloenzymes which employ metal species and organic ligands as central active sites play significant roles in various biological activities. Development of artificial metalloenzymes can help to understand the related physiological mechanism and promote the applications of metalloenzymes in biosynthesis, energy conversion and biosensing. In this work, inspired by the active sites of ferriporphyrin-based metalloenzymes, Fe-MOFs by using ferric as the metal center and a porphyrin analog as the organic ligand were developed as an artificial metalloenzyme. The Fe-MOFs exhibit high peroxidase-like catalytic activity with excellent long-term stability. Moreover, highly sensitive biosensors were built to detect H2O2 and glucose based on the Fe-MOFs. Such MOFs-based artificial metalloenzyme offers an efficient strategy for the development of highly stable and efficient metalloenzymes, showing great potential in catalysis, energy transfer, biosensing and medical diagnosis.
ISSN:1001-8417
1878-5964
DOI:10.1016/j.cclet.2020.03.052