Wetting behavior and reaction mechanism of non-corrosive flux on aluminum

The energy-dispersive spectroscopy ( EDS ) , X-ray diffraction analysis ( XRD ) and differential thermal analysis (DTA) were used to analyze the melting, spreading process, and reaction mechanism of non-corrosive flux on the surface of aluminum. The result indicates that the whole process can be div...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:中国焊接 2015-12, Vol.24 (4), p.27-32
1. Verfasser: 俞伟元 郭熠 刘赟 顾海龙 袁文栋
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The energy-dispersive spectroscopy ( EDS ) , X-ray diffraction analysis ( XRD ) and differential thermal analysis (DTA) were used to analyze the melting, spreading process, and reaction mechanism of non-corrosive flux on the surface of aluminum. The result indicates that the whole process can be divided into three stages. In the first stage, flux is heated from room temperature to its melting point, which is called the endothermic stage, mainly absorbs heat and generates a small amount of liquid flux. When the temperature exceeds the melting point of flux, a large amount of liquid flux is generated and reacts with oxide films on the surface of aluminum. This stage is called the reaction stage. The third stage is a spreading and cleaning process, in which residues and reaction products quickly flow out from the center with liquid flux. The different compositions of flux perform different functions in brazing. K3AlF6 can remove oxide film us a cleaner. Only in liquid or molten state can flux remove oxide film on the substrate.
ISSN:1004-5341